نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مدیریت ورزشی، دانشکده علوم ورزشی، دانشگاه‌رازی، کرمانشاه، ایران

2 دانشیار مدیریت ورزشی، دانشکده علوم ورزشی، دانشگاه‌رازی، کرمانشاه، ایران.

چکیده

پژوهش حاضر به دنبال مقایسه تعداد ورزشکاران رشته‌های مختلف ورزشی در دوران قبل از کرونا؛ بعد از کرونا و پیش‌بینی میزان کاهش ورزشکاران در صورت وجود کرونا برای سال‌های آینده در شهر کرمانشاه بود. این پژوهش از نظر هدف، کاربردی و از نظر ماهیت و رویکرد تحقیقاتی؛ تبیینی است. به لحاظ روش جمع‌آوری اطلاعات پیمایشی؛ و از نظر نوع داده‌ها، کمی است. جامعه آماری کلیه باشگاه‌های دولتی و خصوصی سطح کرمانشاه است که پنج باشگاه‌ مشهور به عنوان نمونه انتخاب شدند. تعداد افراد مبتلا به کرونا و فوتی‌های کرونا شهر کرمانشاه، بر حسب هر ماه از ابتدای شیوع کرونا (اسفند ۹۸ تا اسفند ۱۴۰۰) از مراجع معتبر وزارت بهداشت استخراج گردید. سپس آمار تعداد ورزشکاران از اداره کل ورزش و جوانان کرمانشاه کسب شد. با استفاده از تکنیک هوش مصنوعی و نرم افزار متلب؛ پیش‌بینی اطلاعات مذکور برای آینده امکان‌پذیر شد. میزان خطای به دست آمده در نمودار هیستوگرام، 003/0 به دست آمد که کم‌تر از مقدار سطح 05/0 بود، لذا فرض صفر رد و بین متغیرهای ورودی (تعداد مبتلایان به کرونا و تعداد فوتی‌های کرونا و ....) و متغیر خروجی (تعداد ورزشکاران) رابطه معنادار و معکوس وجود داشت. مقدار ضریب تعیین در نمودار پراکندگی رگرسیون، که 93/0 به دست آمد؛ نشان می‌دهد 93 درصد واریانس متغیر وابسته (تعداد ورزشکاران) توسط متغیرهای مستقل (تعداد مبتلایان به کرونا و تعداد فوتی‌های کرونا) پیش‌بینی شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The negative impact of the corona virus on the economic status of sports venues in Kermanshah using artificial intelligence technology

نویسندگان [English]

  • Nasim Seydi 1
  • Homayoun Abbasi 2

1 M.A Student in Sports Management, Faculty of Sports Sciences, Razi University, Kermanshah, Iran.

2 Associate Professor in Sports Management, Faculty of Sports Sciences, Razi University, Kermanshah, Iran

چکیده [English]

The present study seeks to compare the number of athletes in different sports in the era before and after corona virus and to predict the decrease in the number of athletes in the presence of corona virus for the coming years in the city of Kermanshah. The current research is applied in terms of purpose and explanatory in terms of nature and research approach. In terms of the data collection method, it is a survey, and in terms of the type of data, it is quantitative. The statistical population is all public and private clubs in Kermanshah, and 5 famous clubs were selected as samples. We extracted the number of people infected with corona virus and corona deaths in Kermanshah city according to each month since the beginning of the corona virus outbreak from the reliable sources of the Ministry of Health. Then we obtained the statistics of the number of athletes from the Sports and Youth Department of Kermanshah. By using artificial intelligence and MATLAB software, it became possible to predict the mentioned information for the future. The amount of error obtained in the histogram chart which is 0.003 and is less than the level value of 0.05, therefore the null hypothesis is rejected and between the input variablesand the output variable have a significant and inverse relationship. The value of the coefficient of determination in the regression scatter diagram, which is 0.93, shows that 93% of the variance of the dependent variable is predicted by the independent variables

کلیدواژه‌ها [English]

  • Sport Clubs
  • Crona Consequences
  • Prediction
  • Fall of athletes
  1. Aronsky, D., Jones, I., Raines, B., Hemphill, R., Mayberry, S. R., Luther, M. A., & Slusser, T. (2008). An integrated computerized triage system in the emergency department. In AMIA Annual Symposium Proceedings(Vol. 2008, p. 16). American Medical Informatics Association.
  2. Ahmadi, M., Esfahani Nia, A., Nodehi, M. A., & Ahmadi, M. (2020). Develop a framework for controlling and compensating for financial losses in the sports industry (Case study: Coronavirus outbreak in Iran). Contemporary Studies On Sport Management, 10(20), 97-110.
  3. Australia, C. D. N. (2020). Coronavirus disease 2019 (COVID-19): CDNA national guidelines for public health units.
  4. Bond, A. J., Widdop, P., Cockayne, D., & Parnell, D. (2021). Presumption, networks and value during a global pandemic: lockdown leisure and COVID-19. Leisure Sciences43(1-2), 70-77.
  5. Cruyff, J. (2020). The impact of the Covid-19 on the management of sport organizations. Johan Cruyff Institute.
  6. Cohen, J. (2020). Wuhan seafood market may not be source of novel virus spreading globally. Science, 10(10.1126).
  7. Committee, I. O. (2020). Joint statement from the international olympic committee and the Tokyo 2020 organising committee. Olympic news.
  8. Fallatah, B. A. (2021). An overview of the impact of the COVID-19 pandemic on sports industry: Causes, implications, and options. Journal of Human Sport & Exercise16.
  9. Futterman, M., Panja, T., & Keh, A. (2020). As coronavirus spreads, Olympics face ticking clock and a tough call. The New York Times.
  10. Hedayati, H., Mogharrab, M., Moasheri, N., & SHARIFZADEH, G. R. (2012). STUDYING OF BUMS'STUDENTS'KNOWLEDGE ABOUT HOSPITAL TRIAGE IN 2011.
  11. Heydari, R., Asadollahi, E., & Alizaiy, O. (2021). Identify the Effects of Coronavirus Outbreak on the Sports Industry. Journal of Sport Management, 12(4), 1203-1232.
  12. Hammami, A., Harrabi, B., Mohr, M., & Krustrup, P. (2022). Physical activity and coronavirus disease 2019 (COVID-19): specific recommendations for home-based physical training. Managing Sport and Leisure27(1-2), 26-31.
  13. Li, S., Wang, Y., Xue, J., Zhao, N., & Zhu, T. (2020). The impact of COVID-19 epidemic declaration on psychological consequences: a study on active Weibo users. International journal of environmental research and public health17(6), 2032.
  14. Menati, H. (2020). Investigation of the effects of COVID-19 on the global economy. Journal of Social Impact Assessment1(2), 163-181.
  15. Motalebi, M. (2020). The Impact of the COVID-19 Pandemic on National Growth Prediction in 1399. Journal of Social Impact Assessment, 1(2), 183-206.
  16. Manzoor M, Reema Aman SJ. The Pandemic COVID-19: Impacts on Sports Economy. Pakistan Social Sciences Review. 2021:5(2):320-328.
  17. Newbold, S. C., Finnoff, D., Thunström, L., Ashworth, M., & Shogren, J. F. (2020). Effects of physical distancing to control COVID-19 on public health, the economy, and the environment. Environmental and Resource Economics76(4), 705-729.
  18. Nilsson, N. J., & Nilsson, N. J. (1998). Artificial intelligence: a new synthesis. Morgan Kaufmann.
  19. org/news/joint-statement-fromthe-internationalolympic-committee-and-the-tokyo-2020-organising-committee. Accessed March, 27, 2020.
  20. Parenti, N., Manfredi, R., Reggiani, M. L. B., Sangiorgi, D., & Lenzi, T. (2010). Reliability and validity of an Italian four-level emergency triage system. Emergency Medicine Journal27(7), 495-498.
  21. Soleimani, M., Barani, M., Inanloo, S., & Khojasteh, A. (2020). Modeling the shopping behavior of customers of sports stores during the outbreak of coronavirus (preconditions and consequences). Journal of Sports Management Studies. Accepted.
  22. Toresdahl, B. G., & Asif, I. M. (2020). Coronavirus disease 2019 (COVID-19): considerations for the competitive athlete. Sports health12(3), 221-224.
  23. Yurkova, I., & Wolf, L. (2011). Under-triage as a significant factor affecting transfer time between the emergency department and the intensive care unit. Journal of Emergency Nursing37(5), 491-496.