نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی تربیت بدنی

2 گروه تربیت بدنی و علوم ورزشی، واحد سنندج، دانشگاه ازاد اسلامی ، سنندج ، ایران

3 دانشیار گروه مدیریت ورزشی، واحد سنندج ، دانشگاه آزاد اسلامی ، سنندج، ایران

4 دانشکده مهندسی برق و کامپیوتر، دانشکده‌ فنی، دانشگاه تهران، تهران، ایران

چکیده

پژوهش حاضر به دلیل ارائه روشی نوین برای پیش‌بینی ارزش طول عمر مشتری و کاربرد آن در افزایش سودآوری سازمان‌های ورزشی به لحاظ هدف، کاربردی بوده و از نظر روش گردآوری داده‌ها از نوع میدانی است. در این پژوهش با استفاده از تکنیک دسته‌بندی گروهی داده‌ها در شبکه عصبی به محاسبه و پیش‌بینی ارزش طول عمر مشتریان در باشگاه‌های ورزشی پرداخته‌شده است. حجم نمونه در بخش کیفی با استفاده از روش غیر تصادفی هدفمند، تعداد ۱۸ نفر از خبرگان (اساتید دانشگاهی و مدیران متخصص ورزشی) که در حوزه‌های مرتبط با موضوع تخصص داشتند، شناسایی‌شده و با آن‌ها مصاحبه مستقیم انجام شد و یا از پرسشنامه باز پاسخ استفاده گردید. برای دستیابی به نقطه اشباع، مطالعه میدانی تا زمانی ادامه پیدا کرد که هیچ گواه و مؤلفه جدیدی از داده‌ها حاصل نشد. پس‌ازآن عوامل تحلیل گردیده و ابزار تحقیق ساخته شد. پایایی کلی پرسشنامه 85/0 محاسبه گردید. در بخش کمی جامعه آماری شامل 413 نفر از ورزشکاران زن و مرد که حداقل 6 ماه سابقه فعالیت ورزشی و عضویت در یکی از باشگاه‌های ورزشی واقع در استان‌های غرب و شمال غرب کشور را داشتند، توزیع گردید؛ که به علت پراکندگی و گسترده بودن جامعه موردنظر از روش نمونه‌گیری خوشه‌ای استفاده ‌شد. برای تحلیل داده‌ها، اطلاعات جمعیت شناختی، سابقه ورزشی و 33 متغیر مستقل وارد شبکه شد. همچنین وجود زیرساخت ورزشی، حمایت مالی باشگاه‌ها، رفاه عمومی جامعه، اثربخشی خدمات ورزشی، مدیریت ورزشی هوشمند و مهارت مربی، تأثیر بالایی بر افزایش ارزش طول عمر مشتری دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Predicting The Lifetime Value of Sports Customers Based on Neural Network Group Technique (GMDH)

نویسندگان [English]

  • Mahrokh Rajabi Asli 1
  • Mozhgan khodamoradpoor 2
  • Mozafar Yektayar 3
  • Reshad Hosseini 4

1 Department

2 Department of Physical Education and Sport Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

3 Associate Professor of Sport Management, Department,, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran

4 School of ECE, College of Engineering, University of Tehran, Tehran, Iran

چکیده [English]

The present research is practical due to providing a new method for predicting customer lifetime value and application in increasing the profitability of sports organizations, and in terms of the method of data collection, it is field type. In this research, using the GMDH artificial neural network, the lifetime value of customers in sports clubs has been calculated and predicted. The sample size in the qualitative section was identified using a targeted non-random method, 18 experts (university professors and sports managers) who had expertise in the fields related to the subject, and direct interviews were conducted with them or an open-ended questionnaire was used. After that, the factors were analyzed and the research tool was made. The overall reliability of the questionnaire was calculated as 0.85. In the quantitative part, the statistical population includes 413 male and female athletes who have at least 6 months of sports activity and membership in one of the sports clubs located in the western and northwestern provinces of the country . They had, it was distributed; that due to the dispersion and wideness of the target society, the cluster sampling method was used. The results showed that using this method it is possible to predict the value of life span with an accuracy of more than 95%. Also, the existence of sports infrastructure, financial support of clubs, general well-being of society, effectiveness of sports services, smart sports management and the skill of the coach have a high impact on increasing the customer's lifetime value.

کلیدواژه‌ها [English]

  • Prediction
  • Lifetime Value
  • club Customers
  • GMDH
  • Neural Network
  1. Aghaei shahri, M. S., Memari, Z., & Saadati, M. (2018). A Recognition of Areas and Infrastructures of Iran Sport Industry. Sport Management Journal, 10(4), 627-645. (persian)
  2. Amadi, M., Benar, N., Gohar Rostami, H. R., & Saeedi, F. (2019). The effect of customer knowledge management on fitness clubs customer lifetime value in Rasht. Sport Management and Development, 8(4), 178-189. (persian)
  3. Amin, A., Al-Obeidat, F., Shah, B., Adnan, A., Loo, J., & Anwar, S. (2019). Customer churn prediction in telecommunication industry using data certainty. Journal of Business Research, 94, 290-301.
  4. Arscott, R. (2022). Risk management in the shadow economy: Evidence from the sport betting market. Journal of Corporate Finance, vol, 77, 102307.
  5. Azadi, N. (2017). Designing a strategic model of public sports in Mazandaran province. 11th National Congress of Pioneers of Progress, Tehran, Center for the Iranian Islamic Model of Progress. March 2017.University of Tehran. (Persian)
  6. Besharati holaso, M., Naderinasab, M., & ramzani nezhad, R. (2021). A model for Analys is and management development of familys sport in Iran. Research on Educational Sport, 9(23): 155-182. (Persian)
  7. Chang, Henry, Lin, Hardy, & Bag, Anima. (2016). Customer satisfaction with smartphones with smartphone trends in Taiwan. (4). 148-162.
  8. Edwards, M, B., & Rowe, K. (2019). "Managing sport for health: An introduction to the special issue.Sport Management Review, 22 (1)1-4.
  9. Ekinci, Y., Ülengin, F., Uray, N., & Ülengin, B. (2014). Analysis of customer lifetime value and marketing expenditure decisions through a Markovian-based model. European Journal of Operational Research, 237(1), 278-288.
  10. Flint, D. J., Blocker, C. P., & Boutin Jr, P. J. (2011). Customer value anticipation, customer satisfaction and loyalty: An empirical examination. Industrial marketing management, 40(2), 219-230.‏
  11. Hoekstra, F., Roberts, L., van Lindert, C., Martin Ginis, K. A., van der Woude, L.H., & McColl, M. A. (2018). "National approaches to promote sports and physical activity in adults with disabilities: Examples from the Netherlands and Canada" Disability and Rehabilitation, 41 (10):1217-1226.
  12. Honary, H., Shojaei Borjoi, & Fathi, F. (2014). Investigating and measuring the quality of services and its relationship with the satisfaction of customers of pools in Tehran. Scientific-Research Quarterly of Organizational Behavior Management Studies in Sports, 1(2), 99-105. (Persian)
  13. Jain, D., Singh, S. S. (2002). Customer lifetime value research in marketing: A review and future directions, journal of interactive marketing, vol. 16, no. 2, 34– 46.
  14. Lim, J. S., Hwang, Y., Kim, S., & Biocca, F. A. (2015). How social media engagement leads to sports channel loyalty: Mediating roles of social presence and channel commitment. Computers in Human Behavior, 46, 158-167.‏
  15. Lin, R. H., Chuang, W.W., Chuang, C.L., Chang. W. S. (2021). Applied Big Data Analysis to Build Customer Product Recommendation Model. Sustainability, 13(9), 1-45.
  16. Moeini, A., Behradmehr, N., Ahrari, M., & Khadem Shariat, S. (2013). Determining Valuation and Scoring Indicators for Customers in Banking Services Marketing: A Case Study of Two Iranian Banks. Business Quarterly, 16(64), 1-25. (Persian)
  17. Mohammmadkazemi, R. Ebrahimi, B.P. & Shiri, M. (2020), Mobile Marketing Influence on Football Fan Behavior: The Case of FC Persepolis; International Journal of Sport Management and Marketing, Volume 20, Issue 5/6, pp 405-427. (Persian)
  18. Moradi, Z., Fakhraei, M., Aramaki, A.A. (2022). Investigating the effect of customer knowledge management on customer lifetime value with the mediation of organizational agility, 4(1-10), 209 – 189. (persian)
  19. Muleya, F.; Zulu, S.; & Nanchengwa, P.C. (2020). Investigating the role of the public private partnership act on private sector participationin PPP projects: A case of Zambia.Int. J. Constr. Manag, 20(3): 598–612.
  20. Narver, J. C., Slater, S. F., & MacLachlan, D. L. (2004). Responsive and proactive market orientation and new‐product success. Journal of product innovation management, 21(5), 334-347.‏
  21. Nastaran Borujeni, I., Ghorbani, M.H., Koozehchian, H., & Ehsani, M. (2018). Identifying the factors affecting the development of public sports culture in Iran.Journal of Sports Management, 10(4): 51-60. (Persian)
  22. Osare Dezfuli, M., Shahram, A., & Zarghami, M. (2018). Development of a strategic plan for the development of public sports in the National Iranian Oil Company. Contemporary research in sports management, 8(15): 45-61. (Persian)
  23. Pourkiani, M, Hamidi, M, Goodarzi, M, & Khabiri, M. (2017). Analyzing the role of championship and professional sport on sport development, Journal of Sport Management Review, 9(42), 55-72. (persian)
  24. Rezvani, M., Rezaee, M., & Tanhapoor, K. (2020). Customer Loyalty Model in Emerging Organizations Based on Artificial Neural Networks (Case ‎Study: Emerging Private Banks‎. New Marketing Research Journal, 10(1), 63-82. (persian)
  25. Rosli, C. M., Firdaus C., M., Saringat, M. Z., Razali, N., & Mustapha, A. (2018). A Comparative Study of Data Mining Techniques on Football Match Prediction. Journal of Physics: Conference Series. 10 (20). P: 012003.
  26. Ruiz, E. & Gandia, R. (2022). The key role of the event in combining business and community-based logics for managing an ecosystem: Empirical evidence from Lyon e-Sport, European Management Journal, In Press. ISSN 0263-2373.
  27. Safaie, N., & Atefyekta, H. (2020). Investigating the Effect of Social Dependency on Customer Trust in Social Networks. New Marketing Research Journal, 9(4), 55-76. (persian)
  28. Sozan, O. (2017). O potrzebic niektorych dzialan modernizacyinych w polskim sporcie, kultura fizyczna”, strategic planning for nonprofit sport organization. 8(3): 15-25.
  29. Van Tuyckom, C. (2011). Sport for All: Fact or fiction? Individual and cross national differences in sport participation from a European perspective. Submitted in partial fulfillment of the requirement for the degree of Doctor in Sociology and social sciences department of sociology. Gent University.
  30. Wang, C.L. & Ahmed, P.K. (2004), "The development and validation of the organisational innovativeness construct using confirmatory factor analysis", European Journal of Innovation Management, Vol. 7 No. 4, pp. 303-313.
  31. Wei, J. T., Lin, S. Y., Yang, Y. Z., & Wu, H. H. (2019). The application of data mining and RFM model in market segmentation of a veterinary hospital. Journal of Statistics and Management Systems, 22(6), 1049-1065.‏
  32. Zhang, H., Liang, X., & Wang, S. (2016). Customer Value Anticipation, Product Innovativeness, and Customer Lifetime Value: The Moderating Role of Advertising Strategy. Journal of Business Research. 69 (9):3725-3730.
  33. Zhang, J., & Bav, Y. (2018). My Views on the Development of China's Sports. Journal of Harbin Institute of Physical Education, 2(91): 125-40.